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An lterative Phase-Only Nulling Method

1. INTRODUCTION

In a recent repor'c1 we investigated in some detail the problem of perturbing a
given set of array element weights to impose nulls in the pattern at specified loca-
tions. Two types of perturbations were examined: perturbations of both the ampli- !'
tudes and phases of the element coefficients, and perturbations of the phases alone,
When both the amplitudes and the phases of the weights are allowed to vary, the
requirement of nulls at the specified locations in the pattern leads to a system of
linear equations for the weight perturbations which canbe solved exactly subject to an
additional constraint involving minimizationof the perturbations. Ifonly the phases of
the element coefficients are allowed to vary, the system of equations for the imposed
nulls in the pattern is non-linear and cannot be solved exactly. Under the assump-

tion that the phase perturbations are small, however, the system of equations for
the nulls can be linearized and then solved in the same way as the equations for com-
bined amplitude and phase perturbations. Because of the approximation involved in
the linearization, the resulting phase perturbations do not give perfect nulls as do
the combined amplitude and phase perturbations. The depth of null obtained depends
on how well the small angle approximation used to linearize the equations for the

(Received for publication 18 February 1982)

1. Shore, R.A., and Steyskal, H.P. (1982) Nulling in Linear Array Patterns With
Minimization of Weight Perturbations, ﬂﬁ%-'l‘ R-82-32.




nulls is actually satisfied by the solutions to the linearized equations. It was found
that, even for a low sidelobe array in which the linearized phase-only nulling pro-
cedure gave reasonably deep nulls for one or two constrained null locations, the
effectiveness of cancellation in a sector of the pattern achieved with phase-only
nulling deteriorated as the size of the sector was increased by adding equispaced
null locations. This behavior contrasted sharply with that found when combined
amplitude and phase perturbations were used. The combination resulted in increas- "
ingly effective cancellation throughout a sector as the width of the sector was in-

] creased by adding more nulls,

- The failure of the linearized phase-only nulling procedure to give a satisfactory

£ solution to the nulling problem for several closely spaced nulls, even in a low side-

4 lobe structure, makes it of interest to consider alternate procedures for solving

¥ the phase-only nulling problem. In this report, 1 describe a simple scheme of

i phase-only nulling in which the linearization procedure is used iteratively. This

scheme is found to be extremely effective in low sidelobe structures although it fails

v to work as a general method. The method is described in the next section. Some

numerical results are then presented, comparing the iterative phase-only nulling
1 method with the simple (that is, non-iterative) linearization method and with nulling
using combined amplitude and phase perturbations.

8 2. ANALYSIS

IS
saoar s,

Consider a linear array of equispaced isotropic elements (Figure 1). The

spacing between the elements is d and the phase reference center is assumed to be

: 4 the center of the array. Let W n= 1,2..., N, be the complex weight of the n"h
i
!

array element. Then the array field pattern, p(u) is

I ¢, 3 ELPTOIPI. .,

1 N -
¥ jd_u
& p{u) = Z w e P
. ~ "n

where

[P T

<N-1 _ -
dn‘_Z_ (n-1), n=1,2, ..., N
and
u=kd sin 8

with
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and § the angle measured from broadside to the array. Note that the dn are odd
symmetric with respect to the phase reference center; that is,

9= - ON-ns+1-
Figure 1. Geometry of Array
b
d-
.. %
N N-I N-2 [o] 3 2 1

The general problem in which we are interested is as follows. Let
a ., n= 1,2, ..., N, be a given taper, assumed to be symmetric with respect to the
phase reference center, of the amplitudes of the element excitations, and let u s be
the direction for the peak of the array pattern. Then the array coefficients are

-] dn Ug

Won = 3, € R n=12, ..., N.
We wish to find the set of perturbations, ¢n' n=1,2, ..., N of the phases of the
element weights that will (a) result in a perturbed pattern with nulls at a set of
prescribed locations, w_, k=1,2, ..., M, and (b) be "as small as possible.' What
does it mean to be ''as small as possible?' The perturbed coefficients are

-jd_u_ jé
e  ns 'n

&
1"
[y

-jd_u -jd_u ie
=a e "s+ane n8Ee "oy, (1

The first term on the RHS of Eq. (1) is the original weight, and the second term is
the total perturbation of the weight. Following Reference 1, the discussion will
consider two forms of minimizing the perturbations. The first is to minimize

N . N
i? 2 o
_E le" ® -1} =4 Z sinz(—z‘l)
n=1 n=1

A LT P T 2w 114

o e =1
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and the second is to minimize

N . N
ie 2 0,7 2
Z (an}e n-—l\) =4n;1 [ansin(—;)]

n=1

o The first form corresponds to minimizing the perturbations relative to the original
F weights, while the second corresponds to minimizing the total perturbations.

: From Eq. (1) it follows that we can represent the perturbed array pattern as
% N

‘ -jd_u jd jd u

. p(u):po(u)+ Z a e S (e n-l)e n

n=1

where po(u) is the original array pattern
N .
=jd_u_ jd_ u
- n's n
po(u) = ,;1 a e e .

s _

.
_—ta

Hence the equation system for the nulls is

N . .
-jd _u o jd_u
! D oae "SE M. e MK _p(u), k=12 ..., M. (2)
' n= 1 n ok
= Separating the real and imaginary parts of Eq. (2) we obtain
N
4 ng:l a cos[d (ug -u) - ¢ =0 (3a)
| N k=1,2 ..., M.
- H - - = 0
3 nz:l a_ sin{d_(ug u) -9l (3b)
‘ The problem can then be stated as follows: find the set of phase perturbations,
- 0, n= 1,2, ..., N, that satisfy the equation system (3} and that minimize either
Al >
Z .2 n
sin” ( ) (4a)
n=1 'z
%
or
2 e
o  sin (—)] . (4b) .
n= | n Z 1
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This problem is an example of what is known in the operations research litera-
ture as a nonlinear programming problem (see for example References 2 and 3).
The problem in general has no exact solution. Furthermore, it is not at all obvious
that the equation system for the nulls has any solution at all and indeed an example
can easily be found when it does not (consider an array with an odd number of
elements for which the amplitude of the central element is greater than the sum of
all the other amplitudes). However, we will not attempt here to answer the question
of under what circumstances solutions exist to Eqs. (3). Rather, we will simply
assume that the given amplitude distribution is such that the equation system for
the ¢, is underdetermined if 2M < N, that it has an infinity of possible solutions,
and that a minimization criterion is used to select a particular one of these solutions.
Since an explicit solution to the problem cannot be found, an efficient numerical
method for finding the solution is desired.

The scheme we propose here is based on the assumption that the sidelobes of
the original pattern are sufficiently low that only small phase perturbations are
required to place nulls at the specified locations. Under this assumption we can
expand Eqgs. (3a, 3b) and neglect all terms quadratic and higher in ® thus obtaining

N

HZ::I a, 0 sin[d (g -u)l= - p(u) (5a)
N k=1,2, , M

n2=:1 2,9y 08 (¢ (ug -u =0 (5b)

Under the same assumption of small o, the functions to be minimized can be approxi-

mated by
N
2 .
2::1 Ol,n (6a)
and
N
i 2
:‘::1 @ 0, )% (6b)

We have written 01 n instead of o, here, not only to indicate that the solution to
Eqs. (5) is an approximation to the solution to Eqs. (3) we are seeking, but also,
ag will be seen shortlv, because the 0, nare to be the first stage in an iterative

process leading to the desired solution.

2. Himmelblau, D. M. (1972) Applied Nonlinear Programming, McGraw-Hill, New York.
3. Schittkowski, K. (1980) Nonlinear Programming Codes, Springer-Verlag, New York.
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The solution to Eq. (5a) that minimizes Eq. (6a) or Eq, (6b) was found in our
earlier repox‘t1 and the result is merely stated here: let

y=- [po(ul). po(uz). .
then

M
in [d -
gl b_ sin [ n (uS um)]

where the vector of coefficients bm is obtained by inverting the matrix equation
Ab=y
with the elements of the matrix A given by

[4]

Equation (5b) is automatically satisfied by this solution because of the antisymmetry

N
= nz:l 2t sin [d_ (u -w)] sin(d (u -u )] kem=1,2 ..., M.

km

of the ¢1 n with respect to the phase reference center. The weights corresponding
to the phase perturbations 0, ,are

-id u_ j¢
a e n's . 1,n
1,n n

and the array pattern is then

p (w = P2 Wyne .
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Now, if the phase perturbations ®, ,are fairly good approximations to the
desired perturbations U then the values of pl(u) at the specified null locations
u=u, k=1,2, ..., M, will be smaller in magnitude than the original values

po(uk). Hence it is reasonable to suppose that the coefficients w can be per-

turbed in turn with a set of still smaller phase perturbations so als’ rtlo place nulls in
the pattern at the specified locations. This idea leads us to the following iterative
scheme, similar to that used by Cheng and Raymond,4 and by Cheng. 5 Let the
weights at the end of the ith iteration, i 2 1, be

ne Jdn 's e

and the corresponding array pattern

N
p:(u) = Z w,
i B

eJdnu
n

For 1= 0, define

®o,n =

~j dn uS
a_ e .
n

Let ¢. be the phase perturbation introduced at the (i+ 1)'Ch iteration,

i+1,n " ‘Di, n
i 2 0. Then similarly to Egs. (5a and 5b), we have
N
ngl a, @, 1,n ¢'i,n) sin [d (ug - u) =@
N °
2 a_ @

n=1

i,nl = ~ Pyl

i+1,n " %i,n’cos (4, (ug - ) =9 pl =0

4. Cheng, D.K., and Raymond, Jr., P.D. (1971) Optimization of array directivity
by phase adjustments, Electron. Letts. i:552-554.

5. Cheng, S.D. (1971) Optimization techniques for antenna arrays, Proc. IEEE.
90:1664-1674,
v




in[d - - = -
% i+1.nsm[ n(us uk) oi,n pi(uk)
N
py anoi,n sm[dn(us ) uk) - oi.n]
n=1
N N

2 Zl “nol’_n C()s[dn(us - uk) - Oi.n] ]

uno cos[dn(uS - uk) - oi 4
1= 1 n=

i+1,n ,n}:

(10b)

The functions to be minimized are
N

Z: 0?4- 1, n

n=1

N
2« )2
no1 4 °i+ I,n °
Eqgs. (10a and 10b) are of the same form as Eqs. (5a and 3b) except for the RHS of
Eq. (10b). But because of the antisymmetry of the 01 . noted above, the RHS of
Eq. (10b) is zero when i=1, and hence by induction the same will be true for succeed-

ing iterations as well. Thus, similarly to Eqg. (9), the 0, are given by
2t

i+1,n
A

n .

Q. = — Z b. sin{d (u_-u_)~9o. ].

i+1,n dn me1 i+l, m n s m i,n

The vector of coefficients bi+ 1.m is obtained by inverting the matrix equation
A

i+12417 Y4

where
N

Lig1 7 '; pyluy) - nz:l a 9 pnsinld (g -u) =0 b ...

T
]

N
- <~ a % n sm[dn(us - uM) -y

n
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and the elements of the matrix Ai+ ) are given by

N
[Ai+ l]k - = nz-_::] 2t sin{d (ug -u) - q)i’n] sindn(us -u ) - :pi’n[ . (14)

Testing for convergence and termination of the iterative procedure can be based

either on the phase perturbations themselves (for example, termination when

mra‘x { |¢i+1.n - oi,nl } <¢ or when Zn: |oi+l,n - oi,n‘ <¢), or on the
values of the beam coefficients. That convergence of the phase perturbations implies
convergence of the beam coefficients follows easily from Eq. (12) in conjunction with

Eqgs. (13) and (14), since

_ Al
—i+1_‘\i+1ii+1

approach limiting values if the 9, , converge to limiting values

and Ai+ 1 and Yisn

On-

It is also worth noting that if the limiting values of the phase perturbations are
small, the resulting cancellation pattern can be interpreted as the sum of pairs of

slightly distorted beams, one pair for each imposed null, in a way that is completely

analogous to the interpretation of the non-iterative phase-only cancellation pattern
as the sum of pairs of beams (see Reference 1). For from Eq. (11), we see that if

the 0; , converge to limiting values O then
k4

2t o
=_n si - _ -
On~ “n mzz:l b, sinld (ug-u ) - ol. t15)

Also, from Eq. (1), if o, is small then the change in the nth weight can be approxi-

mated by

e‘Jd u, 1o,

n s
(e

Aw =a -1

n n
-J dn ug
=jajo0 e (16)
so that, substituting Eq., (15) in Eq. (16),

< -j[dn (us -um) ) ¢n] }

n
-

e

-jd_u i - -
A eJ n S{ e;[dn(us u )=o) )
n

{ -j(dn u + gpn) -j[dn(2 ug -um) - tbn]}
e -e

n
B»
™
o
g

13
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and hence the cancellation pattern is given approximately by
M N . .

ild w-u )-¢ ) jd(u- {2u -u Y+ ¢ ]

Ap(u) = b 2. t e ° T s " ml n

=1 M=

If the phase perturbations, ¢n’ were zero, the cancellation pattern would thus be

4 represented as the sum of M pairs of beams, one member of each pair directed at
:‘, an imposed null location, and the other member, of opposite sign, directed at the
B ' symmetric location with respect to the axis of the mainlobe of the original pattern.
'1, Indeed, this is the approximate representation of the cancellation pattern for the
! nonijterative phase-only nulling scheme (see Reference 1), If the phase perturbations
_;\; are non-zero but small, it is to be expected that the phase perturbations introduce
4 ) a small amount of distortion in the shape of the component beams but that the beams
; representation of the cancellation pattern still holds. Hence, for small perturba-
» tions, the limiting values of the beam coefficients obtained with the iterative nulling
:.‘i method will not differ greatly from the values of the coefficients obtained with the
noniterative nulling scheme. As with the non-iterative method, the nulls produced
A at the prescribed locations will be accompanied by a comparable raising of the
pattern at the symmetric locations with respect to the mainlobe axis.

If the iterative procedure converges, the limiting values of the q’i, n should
satisfy the system of Eqs. (3) for the pattern nulls. If the limiting values are small
they should also be reasonable approximations to the values of the tpn that not only
satisfy Egs. (3) but which also minimize either expression (4a) or (4b).  Further
work is needed, however, to obtain a quantitative estimate on how close the limiting
. values of the ¢i,n will be to the ideal solution. A direct comparison of the values

obtained by a more powerful non-linear programming method with the values ob- j
tained here, would, of course, serve this purpose. The solution obtained by the
iterative scheme proposed here has value not only because it provides a useful
‘ approximation to the desired answer, but also because it can serve as a starting
1 point for further refinement by a more powerful non-linear optimization method.
‘ Such methods often must be started at a feasible solution—that is, a solution to the

constraint equations.

‘On first glance it might appear that the solution to Eqgs. (3) that minimizes, say

Z ¢2 also minimizes (4a). For if we let {wn} be the set of phase perturbations that
n :
satisfy Egs. (3) and minimize (4a), and "bn'} be the set of phase perturbations

that satisfy Eqs. (3) and minimize 24,3‘ then the {wn} and *on} must satisfy the

; following set of inequalities, assuming 0 < lonl =7w/2, 0< lwnl <m/2:

14
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3. NUMERICAL RESULTS

3 A computer program was written to implement the iterative nulling scheme
pv described in the previous section, and run on a CDC 6600 computer. All computa-
tions were performed for an array with 41 elements with half wavelength spacing. !
Unless otherwise stated, the original or unperturbed pattern corresponds to a j
40 dB Chebyshev taper of the element excitations. Figure 2 shows results obtained
when the iterative program was run to impose nulls at one (15. 23°), two (15, 23°,

15, 78°), three (15.23°, 15.78°, 16.33°), and four (15.23°, 15,78°, 16.33°, 16, 88°)
locations. We have plotted the maximum of the values of the perturbed pattern power

at the locations at which nulls were desired (that is, the least deep null) vs number :

pa

R NP SR YO ——

by

of iterations. Figure 2a gives the results obtained when z (an q)n)2 was minimized,

“ % .2 wn < Al .2 ¢n N 2 N 2
. ‘ 4 ~ sin” (—5) = 4 nzz:l sin” (4 )< n:zl o, = nzz:l v )
- If in general .
= 2 2 ~ 2 ¥ s 2 @ | ﬁ
. n:zl ‘Pn z — o, :>n=21 sin (—g)z ngl sin (__51_)

as it does when N= 1, it would follow that the first "<" in Eq. () must be strictly
"=". Unfortunately this is not true, as can be seen by letting ¢, =1+€,y =0,n>1
n

' o =1/4/N, n=1,2, ..., N. We then have, for 0 2 2
. en have, for 0 <e < 1, Z\Pn> Z(Dnaﬂd

‘ v
‘ _ zsinz () = sin® (1/2) = 0. 230
but
E | ZN: s -
21 1.2 1 1 1 1 L
] . sin” (=——=)>N ( - (—— = 2 -
I n- 2yW ivys| T3 Gy 7 "N > 0240 |
I .
= |
) for N > 1. !
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and Figure 2b gives the results corresponding to minimizing Zoi The starting
point of all curves isthe maximum value of the power of the original pattern at the

3 null locations. The value for one iteration is the least null depth achieved with the
simple (that is, non-iterative) linearized nulling procedure that coincides with the

K first step of the iterative procedure. We see that in all cases the iterative procedure
gives null depths (< -250 dB) that greatly exceed the null depths obtained with the

_ non-iterative nulling procedure. As a number of null locations increases, however,
1 more iterations are required to achieve the same depth of null. There is also a
tendency (as is shown, for example, in the four-null curve of Figure 2b) for the

‘j maximum depth of null achievable by the iterative procedure to slowlyv decrease as
) the number of null locations increuses.
‘{3
=
i ! NUMBER OF ITERATIONS
| o 1 23avere o0re3esereOOIE ‘
3 Q
. }
| L
1
_4
t
-
.
Figure 2. Maximum of Perturbed Pattern Power at Imposed
: Null Locations for 1, 2, 3 and 4 Nulls as a Function of

Number of Iterationg., 40 dB Chebyshev amglitude taper.
Figure 2a: z(an¢n)2 = min; Figure 2b: 07 = min

Figure 3 shows corresponding results obtained starting with a 20 dB Chebyshev

taper of the element excitations, when the iterative program was run to impose nulis
at one (14.70°), two (14, 70°, 15.28°), three (14,70°, 1528°, 15,86°), and four
(14.70°, 15.28°, 15.86°, and 16, 44°) locations, We see that for both minimization
criteria the iterative procedure was able to produce deep nulls for the one and two i

16
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null cases, although considerably more iterations were required compared with the
i 40 dB calculations of Figure 2, (Note the curious feature of Figure 3b in which
x fewer iterations were required for the two-null case than for the one-null case.)

For three nulls, the iterative procedure was ineffective for the case of minimizing

2
Z (anon)" but worked well for the case iumizing Zo: For four nulls, the
iterative procedure was unable to achieve any nulling for either minimization cri-

§ 1’ terion. These results point out the limitations of the iterative method when the
sidelobes of the original pattern are relatively high. The phase perturbations re-

4 quired to produce nulls in the pattern are then larger in magnitude than they are for
low sidelobe patterns, especially when multiple closely spaced nulls are prescribed,

with the result that the iterative procedure (consisting of repeated linearizations

- based on the assumption of small phase perturbations) fails to work.

NUMBER OF ITERATIONS
seopws 02sce0rUE

e e et e a ek b e e

b

Figure 3. Maximum of Perturbed Pattern Power at
Imposed Null Locations for 1, 2, 3 and 4 Nulls as a
Function of Number of Iterations. 20 dB Chebyshev
amplitude taper, Figure 3a: z(a_¢ )2 = min;
i : ? nn

Figure 3b: );d)n = min

As an application of the iterative nulling method calculations were performed
to study the variation of cancellation effectiveness within a sector of the pattern as

17
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the width of the pattern is increased by adding equispaced nulls. As in our earlier
r'epox't1 the power cancellation ratio in the sector A8 = § 1 =0 =6 2 is defined

max [p(G)]2
-

2
o'c ap (Po0)]

E 3 where po(B ) is the original pattern and p(# ) is the perturbed pattern. In Table 1 we
E have tabulated the cancellation ratios for various sector widths and different nulling
‘J methods. The entries in the ith row of the table are the cancellation ratios ob- l
1 tained by the methods listed across the top of the table for the sector
' 15.23° <9 = (@ 2)i with nulls placed at 15.23° and at the locations § = (0 2)j' j=i.

For example, the entry of -68.0 dB in the fourth row for iterative phase-only nulling

N -

[ minimizing 24 (an ¢n)2 means that when nulls were imposed by this method at the

i locations 15.23°, 15.78°, 16.33°, 16,88°, and 17.44°, the cancellation ratio in the
; 1 sector 15.23° <69 = 17,44° was -68.0 dB. The sequence of null locations

15.23°, .., 18.00° is equispaced with respect to sinf. For comparison purposes
we have included in Table 1 not only the cancellation ratios obtained with the two ’
iterative phase-only nulling methods but also, taken from Reference 1, the cancella-

. ) tion ratios obtained with the noniterative phase-only methods and the exact combined

amplitude and phase perturbation methods.
The outstanding feature of Table 1 is the remarkable improvement in cancella-
s tion effectiveness resulting from the use of the iterative phase-only methods as com-
: pared with the non-iterative phase-only methods. For six nulls, cancellation ratios
®’ of -82 dB and -78 dB were obtained using the iterative methods as compared with
‘ = -1 dB for the non-iterative phase-only methods. This improvement is, of course,
attributable to the fact that the iterative methods are able to produce far deeper nulls
at the prescribed locations than are the non-iterative methods, with the result that
| ' the entire pattern within the sector is pulled down much further. Indeed, the iterative
. phase-only methods give sector cancellation comparable to the exact combined ampli-
' tude and phase perturbation methods for all values of 92 through 17.44°. For
92 = 18.00°, the iterative phase-only methods give slightly less effective sector can-
cellation than do the combined amplitude and phase perturbation methods. This is
= probably attributable to the fact that, as noted above, the depth of null achievable by
the iterative methods slowly degrades as the number of imposed nulls increases.
For 02 = 18.00°, that is, six imposed nulls, the shallowest of the six nulls produced

by the iterative phase-only methods was -238 dB for minimized Z (anqbn)z and
-221 dB for Zgoﬁ !
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Even though the iterative phase-only methods studied in this report are not as

2 effective in certain multiple null situations and in high sidelobe applications as are

‘ combined amplitude and phase perturbation methods, nevertheless it is important

to recognize that these limitations are not limitations so much of phase-only nulling
per se as they are of the particular iterative scheme proposed here., Based on the
results obtained and discussed in this report, it would appear that in many situations
phase-only methods are in principle as effective in nulling and sector cancellation

as are combined amplitude and phase perturbation methods. Further work is needed,

] however, to refine the numerical procedures involved in phase-only nulling. The
k) principal drawback of phase-only nulling is that the nulls and sector cancellation
J achieved on one side of the mainlobe of the original pattern are accompanied by a

comparable raising of the pattern at the locations and sectors symmetrically placed
with respect to the mainlobe. This, rather than limited nulling effectiveness,

appears to be the main price one pays for using phase-only nulling.

4. CONCLUSIONS

In this report, an iterative numerical method is described for calculating the | 1
minimum phase-only perturbations of the element excitations of a linear array ’
] J required to impose nulls in the pattern at prescribed locations. The method is based
; on repeated linearizations of the equations for the imposed nulls. The iterative
p - scheme is found to be extremely effective in low sidelobe applications when the re-
quired phase perturbations are small, but fails to work as a general method when

IOV S

the required phase perturbations are large.
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